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ABSTRACT
The holy grail for database architecture research is to find a solution
that is Scalable & Speedy, to run on anything from small ARM
processors up to globally distributed compute clusters, Stable &
Secure, to service a broad user community, Small & Simple, to be
comprehensible to a small team of programmers, Self-managing, to
let it run out-of-the-box without hassle.

In this paper, we provide a trip report on this quest, covering
both past experiences, ongoing research on hardware-conscious al-
gorithms, and novel ways towards self-management specifically fo-
cused on column store solutions.

1. INTRODUCTION
Forty years of relational database technology seemingly con-

verged into one commonly accepted system construction lore. It
was based on a tuple-at-a-time pipelined execution paradigm, ARIES
transactions and query optimization based on (mostly) static cost
models, and targeting minimization of hard disk accesses. As RDBMS
functionality reached a plateau, system complexity had increased
considerably, leading to attempts to reduce the tuning knobs of
database systems using, e.g., design wizards.

Meanwhile, the hardware landscape changed considerably. High-
performance application requirements shifted from transaction pro-
cessing to requirements posed by, e.g., business intelligence appli-
cations. Similarly, data being managed changed from relational
tables only through object-oriented to XML and RDF, putting in-
creasing complexity onto existing systems. These trends combined,
caused a major shift in how database management solutions can be
crafted, and by now it has become clear that the traditional lore is
just one local minimum in the overall design space.

The abundance of main memory makes it the prime choice for
current database processing. However, effective use of CPU caches
became crucial. Designing a DBMS from the perspective of large
main memories and multiple data models with different query lan-
guages called for a re-examination of the basic storage structures
needed. Column-stores have become a crucial piece in this puz-
zle, not only because they reduce the amount of data manipulated
within a database engine, but also because columns form an ideal
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building block for realizing more complex structures (such as ta-
bles, but also objects and even trees or graphs).

In this paper, we summarize the quest to renovate database ar-
chitecture with the goal of addressing data management needs with
a common core rather than bolting on new subsystems [38], and
pushing through the functionality plateau, especially using self-
adaptation, exploiting resource optimization opportunities as they
appear dynamically, rather than by static prediction. This quest
covers the major design space choices, experiences gained and on-
going research around the MonetDB system.

In all, this story demonstrates the viability of new self-adaptive
life-forms that may be very successful yet are very different from
the long existing species. In this, the MonetDB strain forms an
open platform available for all who want to explore further evolu-
tion in the data management ecosystem.

2. GENETICS OF COLUMN STORES
Column stores have a long history and come in many variations

[35]. As far back as in the 1970’s, column storage schemes for
relational data have been used mostly for statistical applications.

The heart of a column-store is a direct mapping of a relational
table into its canonical binary (2-ary) equivalent [11] holding an
imaginary system surrogate OID and a value. While the binary re-
lations can be seen as tables, it is evident that storing and optimiz-
ing them as relational tables in existing engines fails. For example,
their per tuple storage overhead is substantial and the cost-based
optimizers can not cope with the search space explosion. Instead, a
column-store specific representation opens opportunities for selec-
tive replication, e.g., using different sort orders, and more effective
compression schemes. Such structural changes percolate through
the DBMS software stack, including the way the engine operates.

For decades, the database execution paradigm has been a tuple-
at-a-time approach, geared at reducing the intermediate storage foot-
print of queries. With shifting to larger main memories, it becomes
possible to explore a column-at-a-time approach. Column-wise ex-
ecution is more efficient on current hardware, which incidentally
looks much like the super-computers of the past (based on deep
pipelining and SIMD vector execution). The abundance of large
numbers of cores allow also for experimentation with the function-
at-a-core approach [16, 4].

Likewise, improving access to pieces of interest is traditionally
addressed by maintaining indices exploited by the inner-core rela-
tional operators. The next improvement came from materialized
views, which gives the query optimizer alternatives to reduce ac-
cess cost. Both, however, are maintained under (heavy) updates
and require DBA expertise [3, 42]. An alternative pioneered in col-
umn stores is to aim for just-in-time (partial) indexing, based on the
rationale that not all data is equally important.
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Figure 1: MonetDB: a BAT Algebra Machine

Together, the trends triggered an interest into the re-design of the
basic relational algebra operators using novel hardware, as reported
in a series of successful workshops [4].

The MonetDB system uses the column-at-a-time paradigm, just-
in-time indexing, plan-for-reuse, where optimization opportunities
are helped by its columnar result materialization. In the derivative
X100 project [43], it was shown that the efficiency of columnar ex-
ecution can be retained and even enhanced in a pipelined execution
model without materialization, scaling to huge disk-based scenar-
ios by exploiting vector processing and light-weight compression.

3. MONETDB ARCHITECTURE
The storage model deployed in MonetDB is a significant de-

viation of traditional database systems. It uses the Decomposed
Storage Model (DSM) [11], which represents relational tables us-
ing vertical fragmentation, by storing each column in a separate
<surrogate,value> table, called BAT (Binary Association Ta-
ble). The left column, often the surrogate or oid (object-identifier),
is called the head, and the right column tail. MonetDB executes a
low-level relational algebra called the BAT Algebra. Data in execu-
tion is always stored in (intermediate) BATs, and even the result of
a query is a collection of BATs.

Figure 1 shows the design of MonetDB as a back-end that acts
as a BAT Algebra virtual machine programmed with the MonetDB
Assembler Language (MAL). The top consists of a variety of query
language compilers that produce MAL programs, e.g., SQL for re-
lational data, XQuery for XML.

BAT storage takes the form of two simple memory arrays, one
for the head and one for the tail column (variable-width types are
split into two arrays, one with offsets, and the other with all con-
catenated data). Internally, MonetDB stores columns using mem-
ory mapped files. It is optimized for the typical situation that the
surrogate column is a densely ascending numerical identifier (0,1,2,..);
in which case the head array is omitted, and surrogate lookup be-
comes a fast array index read in the tail. In effect, this use of arrays
in virtual memory exploits the fast in-hardware address to disk-
block mapping implemented by the MMU (memory management
unit) in a CPU to provide an O(1) positional database lookup mech-
anism. From a CPU overhead point of view this compares favor-
ably to B-tree lookup into slotted pages – the approach traditionally

used in database systems for “fast” record lookup.
The Join and Select operators of the relational algebra take an

arbitrary Boolean expression to determine the tuples to be joined
and selected. The fact that this Boolean expression is specified at
query time only, means that the RDBMS must include some expres-
sion interpreter in the critical runtime code-path of these operators.
Traditional database systems implement each relational algebra op-
erator as an iterator class with a next() method that returns the next
tuple; database queries are translated into a pipeline of such iter-
ators that call each other. As a recursive series of method calls is
performed to produce a single tuple, computational interpretation
overhead is significant. Moreover, the fact that the next() method
of all iterators in the query plan is executed for each tuple, causes
a large instruction cache footprint, which can lead to strong perfor-
mance degradation due to instruction cache misses [6].

In contrast, each BAT Algebra operator maps to a simple MAL
instruction, which has zero degrees of freedom: it does not take
complex expressions as parameter. Rather, complex expressions
are broken into a sequence of BAT Algebra operators that each
perform a simple operation on an entire column of values (“bulk
processing”). This allows the implementation of the BAT algebra
to forsake an expression interpreting engine; rather all BAT algebra
operations in the implementation map onto simple array operations.
For instance, the BAT algebra expression
R:bat[:oid,:oid]:=select(B:bat[:oid,:int], V:int)

can be implemented at the C code level like:

for (i = j = 0; i < n; i++)
if (B.tail[i] == V) R.tail[j++] = i;

The BAT algebra operators have the advantage that tight for-
loops create high instruction locality which eliminates the instruc-
tion cache miss problem. Such simple loops are amenable to com-
piler optimization (loop pipelining, blocking, strength reduction),
and CPU out-of-order speculation.

3.1 Optimizer Architecture
MonetDB’s query processing scheme is centered around three

software layers. The top is formed by the query language parser
and a heuristic, language- and data model-specific optimizer to re-
duce the amount of data produced by intermediates and to exploit
catalogue knowledge on join-indices. The output is a logical plan
expressed in MAL.

The second tier consists of a collection of optimizer modules,
which are assembled into optimization pipelines. The modules pro-
vide facilities ranging from symbolic processing up to just-in-time
data distribution and execution. MAL programs are transformed
into more efficients ones and sprinkled with resource management
directives. The approach breaks with the hitherto omnipresent cost-
based optimizers by recognition that not all decisions can be cast
together in a single cost formula. Operating on the common binary-
relational back-end algebra, these optimizer modules are shared by
all front-end data models and query languages.

The third tier, the MAL interpreter, contains the library of highly
optimized implementation of the binary relational algebra opera-
tors. They maintain properties over the object accessed to gear the
selection of subsequent algorithms. For example, the Select opera-
tor can benefit both from sorted-ness of the BAT or it may call for
a sample to derive the expected sizes. 1

3.2 Front-ends
The original DSM paper [11] articulates the idea that DSM could

be the physical data model building block to empower many more
1More details can be found on-line at http://www.monetdb.com/



complex user-level data models. This observation is validated with
the open-source MonetDB architecture, where all front-ends pro-
duce code for the same columnar back-end. We briefly discuss
how BATs are used for processing widely different front-end data
models and their query languages.

SQL. The relational front-end decomposes tables by column, in
BATs with a dense (non-stored) TID head, and a tail column with
values. For each table, a BAT with deleted positions is kept. Delta
BATs are designed to delay updates to the main columns, and al-
low a relatively cheap snapshot isolation mechanism (only the delta
BATs are copied). MonetDB/SQL also keeps additional BATs for
join indices; and value indices are created on-the-fly.

XQuery. The work in the Pathfinder project [8] makes it possi-
ble to store XML tree structures in relational tables as <pre,post>
coordinates, represented as a collection of BATs. In fact, the pre-
numbers are densely ascending, hence can be represented as a (non-
stored) dense TID column, saving storage space and allowing fast
O(1) lookups. Only slight extensions to the BAT Algebra were
needed, in particular a series of region-joins called staircase joins
were added to the system for the purpose of accelerating XPath
predicates. MonetDB/XQuery provides comprehensive support for
the XQuery language, the XQuery Update Facility, and a host of
IR-specific extensions.

Arrays. The Sparse Relational Array Mapping (SRAM) project
maps large (scientific) array-based data-sets into MonetDB BATs,
and offers a high-level comprehension-based query language [12].
This language is subsequently optimized on various levels before
being translated into BAT Algebra. Array front-ends are particu-
larly useful in scientific applications.

SPARQL. The MonetDB team has started development to pro-
vide efficient support for the W3C query language SPARQL, using
MonetDB as a scalable RDF storage. Preliminary experimental
performance results were presented in [36].

4. CACHE-CONSCIOUS ALGORITHMS
Database systems grind massive amounts of data to find the snip-

pets or relationships of interest. This amounts to a sizable dataflow
within most architectures, which is countered by good query plan
optimizers and navigational aids from, e.g., indices and material-
ized views. However, in the end, information is passed through the
memory hierarchy to the processor pool. Both puts a limit on what
can be achieved.

The seminal paper by Ailamaki [6] showed that database systems
exploit hardware poorly. A new approach based on the recognition
of the internal hardware limitations was urgently needed. We illus-
trate it with a synopsis of cache-conscious join algorithms, the core
of our VLDB 1999 paper [9] as well as some follow-up work.

4.1 Partitioned Hash-join
The nature of any hashing algorithm implies that the access pat-

tern to the inner relation (plus hash-table) is random. In case the
randomly accessed data is too large for the CPU caches, each tuple
access will cause cache misses and performance degrades.

Shatdal et al. [34] showed that a main-memory variant of Grace
Hash-Join, in which both relations are first partitioned on hash-
number into H separate clusters, that each fit into the L2 mem-
ory cache, performs better than normal bucket-chained hash join.
However, the clustering operation itself can become a cache prob-
lem: their straightforward clustering algorithm, that simply scans
the relation to be clustered once and inserts each tuple in one of the
clusters, creates a random access pattern that writes into H sepa-
rate locations. If H is too large, there are two factors that degrade
performance. First, if H exceeds the number of TLB entries each
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Figure 2: Partitioned Hash-Join (H=8⇔ B=3)

memory reference will become a TLB miss. Second, if H exceeds
the number of available cache lines (L1 or L2), cache thrashing
occurs, causing the number of cache misses to explode.

4.2 Radix-cluster
Our Radix-Cluster algorithm [9] divides a relation U into H clus-

ters using multiple passes (see Figure 2). Radix-clustering on the
lower B bits of the integer hash-value of a column is achieved in
P sequential passes, in which each pass clusters tuples on Bp bits,
starting with the leftmost bits (∑P

1 Bp = B). The number of clusters
created by the Radix-Cluster is H = ∏

P
1 Hp, where each pass sub-

divides each cluster into Hp = 2Bp new ones. With P = 1, Radix-
Cluster behaves like the straightforward algorithm.

The crucial property of the Radix-Cluster is that the number of
randomly accessed regions Hx can be kept low; while still a high
overall number of H clusters can be achieved using multiple passes.
More specifically, if we keep Hx = 2Bx smaller than the number of
cache lines and the number of TLB entries, we completely avoid
both TLB and cache thrashing. After Radix-Clustering a column
on B bits, all tuples that have the same B lowest bits in its column
hash-value, appear consecutively in the relation, typically forming
clusters of |U |/2B tuples (with |U | denoting the cardinality of the
entire relation).

Figure 2 sketches a Partitioned Hash-Join of two integer-based
relations L and R that uses two-pass Radix-Cluster to create 8 clus-
ters – the corresponding clusters are subsequently joined with Hash-
Join. The first pass uses the 2 left-most of the lower 3 bits to
create 4 partitions. In the second pass, each of these partitions is
sub-divided into 2 partitions using the remaining bit. Experimen-
tal assessment confirms that trading extra CPU work for reduced
random memory access with multi-pass Radix-Cluster significantly
improves performance on modern hardware [9].

In [25], we conclude that cache-conscious algorithms achieve
their full performance only once next to memory access also CPU
costs are minimized, e.g., by removing function calls and divisions
(in the hash function) from inner-most loops. Extensive experi-
ments show that memory and CPU optimization boost each other,
i.e., their combined improvement is larger than the sum of their in-
dividual improvements. CPU- and cache-optimized radix-clustered
partitioned hash-join can easily achieve an order of magnitude per-
formance improvement over simple hash-join.



4.3 Radix-decluster
Joins in real-life queries almost always come with projections

over other attributes. In a column store this means that, at some
point, we have to reconstruct the complete tuple. This leads to a 2-
phase algorithm: join index construction and column projection. In
the first phase, we access the columns with the join attributes, find
matching pairs of tuples, and keep them as a join-index [39]. In the
second phase, all projection columns are accessed one-by-one and
a result column is produced using a join-index to fetch values from
the input column.

One should note that the DSM post-projection join strategy ma-
terializes the join result. This is inevitable for the so-called “hard”
join cases, where we must join two relations that do not fit the
small-but-fast memory (i.e., the CPU cache). This is similar to scal-
able I/O-based join algorithms such as Sort-Merge-Join or Hybrid
Hash-Join, that must be applied when the inner relation exceeds the
RAM buffer size and pipelining is not possible.

Our Radix-Decluster algorithm presented in [28] is the crucial
tool of MonetDB to process (i.e., join, but also re-order) huge tables
with a good access pattern, both in terms of CPU cache access as
well as I/O access (through virtual memory).

In our experiments, we tested various cache-conscious join (pro-
jection) strategies both on the traditional storage layout (NSM) and
DSM storage schemes. One important conclusion from these ex-
periments is that Partitioned Hash-Join significantly improves per-
formance not only for MonetDB and DSM, but also for the NSM
pre-projection strategy.

The performance evaluation further shows that Radix-Decluster
is pivotal in making DSM post-projection the most efficient over-
all strategy. We should note, that unlike Radix-Cluster, Radix-
Decluster is a single-pass algorithm, and thus has a scalability limit
imposed by a maximum number of clusters and thus tuples. This
limit depends on the CPU cache size and is quite generous (assum-
ing four-byte column values, the 512KB cache of a Pentium4 Xeon
allows projecting relations of up to half a billion tuples) and scales
quadratically with the cache size (so the 6MB Itanium2 cache al-
lows for 72 billion tuples).

As for the prospects of applying DSM Radix-Decluster in off-
the-shelf RDBMS products, we support the case made in [30] for
systems that combine DSM and NSM natively, or that simply add
DSM to the normal NSM representation as projection indices [29].

4.4 Modeling Memory Access Costs
Cache-conscious database algorithms achieve their optimal per-

formance only if they are carefully tuned to the hardware specifics.
Predictive and accurate cost models provide the cornerstones to au-
tomate this tuning task. We model the data access behavior in terms
of a combination of basic access patterns using the unified hardware
model from [26, 24].

Memory access cost can be modeled by estimating the number of
cache misses M and scoring them with their respective miss latency
l [27]. Akin to detailed I/O cost models we distinguish between
random and sequential access. However, we now have multiple
cache levels with varying characteristics. Hence, the challenge is
to predict the number and kind of cache misses for all cache lev-
els. Our approach is to treat all cache levels individually, though
equally, calculating the total cost as sum of the cost for all levels:

TMem =
N

∑
i=1

(Ms
i · lsi +Mr

i · lri ).

This leaves the challenge to properly estimate the number and
kind of cache misses per cache level for various database algo-

rithms. The task is similar to estimating the number and kind of
I/O operations in traditional cost models. However, our goal is to
provide a generic technique for predicting cache miss rates, sacri-
ficing as little accuracy as possible.

The idea is to abstract data structures as data regions and model
the complex data access patterns of database algorithms in terms of
simple compounds of a few basic data access patterns, such as se-
quential or random. For these basic patterns, we then provide cost
functions to estimate their cache misses. Finally, we present rules
to combine basic cost functions and to derive the cost functions of
arbitrarily complex patterns. The details are presented in [26, 24].

5. VECTORIZED COLUMN-STORES
Our experiments on cache-conscious algorithms revealed the ben-

efits and pitfalls of early versions of MonetDB and triggered projects
exploring yet again widely different avenues. One stream focuses
on exploring self-adaptive database architecture as discussed in Sec-
tion 6.1. A second stream aims at interleaving query optimization
and query execution at runtime, exploiting sampling over materi-
alized intermediate results to detect data correlations [20]. A third
stream forms the X100 project [43] which is geared towards bet-
ter use of the hardware platforms for columnar execution, while
avoiding excessive materialization. 2

The X100 execution engine at the core of this project conserves
the efficient zero-degree of freedom columnar operators found in
MonetDB’s BAT Algebra, but embeds them in a pipelined rela-
tional execution model, where small slices of columns (called ”vec-
tors”), rather than entire columns are pulled top-down through a re-
lational operator tree. As such, it cleanly separates columnar data
flow from pipelined control flow. The vector size is tuned such that
all vectors of a (sub-) query together fit into the CPU cache. When
used with a vector-size of one (tuple-at-a-time), X100 performance
tends to be as slow as a typical RDBMS, while a size between 100
and 1000 improves performance by two orders of magnitude, pro-
viding a proper benchmark for the effectiveness of columnar exe-
cution (because measured in the same system).

Rather than relying on memory-mapped files for I/O, X100 uses
an explicit buffer manager optimized for sequential I/O, X100 is
geared to supporting huge disk-based data-sets efficiently, that is,
aiming to keep all CPU cores busy. While the reduced I/O vol-
ume in column stores makes non CPU-optimized implementations
easily CPU bound, the raw speed of the columnar (vectorized) ex-
ecution primitives in MonetDB and X100 makes this non-trivial
to solve. To reduce I/O bandwidth needs, X100 added vectorized
ultra-fast compression methods [44] that decompress values in less
than 5 CPU cycles per tuple, as well as the cooperative scan I/O
scheduling [45] where multiple active queries cooperate to create
synergy rather than competition for I/O resources.

The X100 buffer manager supports both DSM and PAX and de-
couples storage layout from query execution layout. The execution
layout only contains used columns, typically in DSM when pass-
ing data sequentially between operators. However, it was shown
[46] that (e.g., hash-based) random-access operators benefit from
re-grouping columnar data horizontally, creating a mixed-layout in-
execution tuple representation, calling for tuple-layout planning as
a novel query optimizer task.

Current X100 research focuses on achieving fast ways to up-
date disk-based column-stores, as well as the applicability of novel
and dynamic multi-table clustering techniques, to reduce further
the CPU and I/O effort needed for answering BI queries.

2X100 is further developed in the CWI spin-off VectorWise.



6. THE NEW SPECIES
Column-stores, and the traditional n-ary stores are at two ends of

a spectrum. They both address the same user community, but with
different technological solutions and application emphasis. The
space spanned is by far not explored in all its depths. Some species
on the horizon based on MonetDB are the following.

6.1 Self-management for Survival
For over a decade [7, 2], reduction of the number of knobs in a

database system has been the prime target. The underlying reasons
stem both from the software complexity of a modern DBMS and
the need to support a broad user base. Users are not necessarily
versed in physical database design, index selection, or thorough
SQL knowledge.

A column store with its reduced storage complexity, makes it
easier for the system designer to strike a balance between soft-
ware complexity, maintainability, and performance. In this con-
text two directions within the MonetDB project are being explored:
database cracking and recycling.

Since [22], the predominant approach in database systems to pay
the price for index maintenance during updates is challenged by a
simple scheme, called database cracking. The intuition is to focus
on a non-ordered table organization, extending a partial index with
each query, i.e., the physical data layout is reorganized within the
critical path of query processing. We have shown that this approach
is competitive over upfront complete table sorting and that its ben-
efits can be maintained under high update load. The approach does
not require knobs [18].

Another track concerns an alternative to materialized views, which
are produced by design wizards through analysis of the past work-
load. However, the operator-at-a-time paradigm with full material-
ization of all intermediates pursued in MonetDB provides a hook
for easier materialized view capturing. The results of all relational
operators can be maintained in a cache, which is also aware of their
dependencies. Then, traditional cache replacement policies can be
applied to avoid double work, cherry picking the cache for previ-
ously derived results. It has been shown to be effective using the
real-life query log of the Skyserver [19].

6.2 Turbulent Data Streams
The abundance of processing power in the network, its capabil-

ities and those of individual nodes has triggered an avalanche of
research in the area of P2P systems and the Cloud. The time has
come where the network can be your friend in addressing the per-
formance requirements of large databases. The DataCell [21, 23]
and DataCyclotron [13] projects represent species in this arena.

The DataCell aims at using the complete software stack of Mon-
etDB to provide a rich data stream management solution. Its salient
feature is to focus on incremental bulk-event processing using the
binary relational algebra engine. The enhanced SQL functionality
allows for general predicate based window processing. Preliminary
results indicate the validity of this approach against public bench-
marks [23].

Common off-the-shelf network interface hardware also provides
opportunities to increase performance. In particular, Remote DMA
enables the nodes in a cluster to write into remote memory with-
out interference of the CPU. This completely bypasses the TCP/IP
stack, which is known for its high overhead. This hardware feature
can be used to explore the survival of a new species, one where the
database hot-set is continuously floating around the network. The
obvious benefit, if successful, would be increased system through-
put and an architecture to exploit the opportunities offered by clus-
ters and compute Clouds.

7. EVOLUTIONARY TRENDS
In retrospect, all three architecture-aware VLDB 1999 papers [6,

31, 9] deserve to be considered the seeds of a renewed research in-
terest in making database technology hardware-conscious to effec-
tively exploit the available performance potentials. Since then, an
active community, ranging from database researchers to hardware
designers, has established around the DaMoN workshop series [4].

While projects like MonetDB and C-Store [37, 1] demonstrate
the natural fitness of columnar systems, various other projects look
into making also classical row-store technology (more) hardware
aware. We briefly summarize selected work that has been published
in major database conferences over the last decade.

As discussed in Section 4, improving spatial and temporal local-
ity of data access is a key technique to cope with increased memory
access latency by reducing cache miss ratios. Ailamaki et al. [6]
present a detailed problem analysis, identifying that commercial
DBMSs exploit modern hardware poorly, causing CPUs to stall for
up to 95% of the time waiting for memory.

Rao and Ross focus on tree structures, presenting read-only Cache-
Sensitive Search Trees (CSS-trees) in [31]. The key ideas are to
eliminate internal-node pointers by storing the tree as an array, and
to tune the node size to maximize cache line usage. In [32], these
ideas are extended to updateable Cache-Sensitive B+ Trees (CSB+-
Trees), improving spatial locality of B+-Trees by storing all chil-
dren of a given node contiguously. Thus, only the pointer of the
first child needs to be stored explicitly, reducing the node size and
increasing cache line utilization. In [40], Zhou and Ross improve
the temporal locality of indices, by buffering accesses to nodes in
tree structures, and performing tree-traversal operations in bulk.

Ailamaki et al. [5] design a hybrid data storage model, called
PAX. By keeping a NSM-like paged storage, but using a DSM-
like columnar layout within each disk page, PAX has the I/O char-
acteristics of NSM, and cache-characteristics of DSM. The data-
morphing technique [14] generalizes the PAX approach by dynam-
ically dividing a relation into a set of vertical partitions. Finally,
Clotho [33] lifts the restriction that storage and processing use the
same model, by transparently choosing the most suitable storage
model for a given workload. Chen et al. [10] discuss how explicit
software prefetching techniques can be applied to database opera-
tions to reduce the effect of cache and memory access latency.

Most of the techniques mentioned above need to be explicitly
tuned to the hardware characteristics to achieve their optimal per-
formance. In contrast, cache-oblivious algorithms [17] and their
data structures are designed to maximize spatial temporal locality
independently of the exact hardware parameters.

While not noticeable with operator-at-a-time execution paradigms,
instruction cache misses have been identified as a major perfor-
mance problem for tuple-at-a-time execution paradigms [6]. To
overcome the problem, various techniques are proposed to improve
temporal code locality with tuple-at-a-time execution [15, 41].

Space limitations do not allow us to discuss additional work,
e.g., on super-scalar multi-core CPUs, SIMD, graphics processors
(GPUs), network processors, FPGAs, and flash memory.

8. SUMMARY
This short note provides a synopsis of the evolution of an open-

source column-store DBMS. During its development we hit several
sizable areas for innovative research. The memory chasms, be-
tween L1/L2, RAM and disk, and processing speed of multi-core
systems call for new ways to design algorithms. From complex
navigational datastructures back to ingenious simplicity using high
speed sequential access combined with partial indexing.



Operator-at-a-time processing, albeit potentially expensive due
to its full materialization, can be bent into an advantage by reducing
the need to pre-define materialized views. Likewise, the processing
paradigm shift turns the page from preparing for ubiquitous fast
retrieval using expensive updates into preparing for fast access to
what matters only.

Evolution takes time. Existing species adjust to the change in
environments. Some species become extinct, others can adjust and
flourish in the new setting. The prime shift of database transaction
processing towards business intelligence applications in a turbulent
hardware setting, can be considered such a major environmental
shift. It opens a vista for exploration for the brave at heart. Pioneers
have spotted a lot of game awaiting for the hunting researchers.
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